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In DeCaro et al. [DeCaro, M. S., Thomas, R. D., & Beilock, S. L. (2008). Individual differences
in category learning: Sometimes less working memory capacity is better than more. Cogni-
tion, 107, 284–294] we demonstrated that sometimes less working memory (WM) has its
advantages. The lower individuals’ WM, the faster they achieved success on an informa-
tion-integration (II) category learning task adopted from Waldron and Ashby [Waldron,
E. M., & Ashby, F. G. (2001). The effects of concurrent task interference on category learn-
ing: Evidence for multiple category learning systems. Psychonomic Bulletin & Review, 8,
168–176]. We attributed this success to the inability of lower WM individuals to employ
explicit learning strategies heavily reliant on executive control. This in turn, we hypothe-
sized, might push lower WM individuals to readily adopt procedural-based strategies
thought to lead to success on the II task. Tharp and Pickering [Tharp, I. J., & Pickering, A.
D. (2009). A note on DeCaro, Thomas, and Beilock (2008): Further data demonstrate com-
plexities in the assessment of information-integration category learning. Cognition]
recently questioned whether the II category learning task DeCaro et al. used really reflects
procedural learning. In an effort to investigate Tharp and Pickering’s assertions with
respect to individual differences in WM, we replicate and extend our previous work, in part
by modeling participants’ response strategies during learning. We once again reveal that
lower WM individuals demonstrate earlier II learning than their higher WM counterparts.
However, we also show that low WM individuals’ initial success is not because of proce-
dural-based responding. Instead, individuals lower in WM capacity perseverate in using
simple rule-based strategies that circumvent heavy demands on WM while producing
above-chance accuracy.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction We predicted these findings by drawing on the COVIS
We (DeCaro, Thomas, & Beilock, 2008) recently demon-
strated that the correlation between individual differences
in working memory (WM) and performance is not always
positive. Rather, we showed in a category learning para-
digm that the relation between WM and the ability to ac-
quire new categories depends on the nature of the
category structure being tested. The higher individuals’
WM, the faster they learned rule-based (RB) categories
but the slower they learned information-integration (II)
categories.
. All rights reserved.

ck).
model of categorization (Ashby & Maddox, 2005). This
model states that II category learning will be slower to
the extent that an individual persists in relying on explicit
strategies to generate category membership in lieu of
adopting the procedurally-driven strategies most optimal
for learning II tasks (e.g., Zeithamova & Maddox, 2006).
We reasoned that, because individuals higher in WM
capacity are better able to explicitly attend to multiple
stimulus features and test complex hypotheses (Dougherty
& Hunter, 2003), they should exhaust explicit strategies
before allowing the procedural system to dominate
responding. On the other hand, individuals lower in WM,
who have less capacity to test and switch among multiple
rules, should instead be quicker to rely on the optimal

mailto:beilock@uchicago.edu
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procedural system and thus faster to learn II category
structures. As a result, less WM should support quicker
learning on the II task – a counterintuitive prediction given
the predominant view in the WM literature that greater
capacity always translates into superior performance (Con-
way et al., 2005; Stanovich & West, 2000).

Recently, Tharp and Pickering (2009) called into ques-
tion whether individuals actually use procedural learning
when performing the II category task originally developed
by Waldron and Ashby (2001) and used in DeCaro et al.
(2008). Tharp and Pickering identified several simple expli-
cit rules that can be used to classify the II stimuli correctly
about 75% of the time. By modeling response strategies,
Tharp and Pickering showed that individuals often utilize
these simple rules and suggest that this rule use may lead
to success on the II task. Tharp and Pickering support their
claims by demonstrating that individuals able to reach 8
consecutive correct responses (CCR) – the learning crite-
rion used by Waldron and Ashby (2001) and by DeCaro
et al. (2008) – are often unable to maintain perfect accu-
racy across the following 8 trials (i.e., at a 16 CCR criterion).
Thus, individuals could be attaining 8 CCR by using a sim-
ple rule that produces some success but falls short when
higher levels of performance are required.

Tharp and Pickering’s (2009) work leads to an interest-
ing alternate explanation for our previous findings. Specif-
ically, individuals lower in WM capacity, who do not have
the capacity to support complex explicit hypothesis test-
ing, may demonstrate quicker II category learning not be-
cause the procedural learning system dominates
responding earlier but because these learners use simple
explicit strategies. Such simple strategies are ‘‘good en-
ough” to produce better-than-chance accuracy (e.g., Gige-
renzer, 2007) but fall short when perfect or near-perfect
performance is expected. Both simple rule-based and pro-
cedural strategies can be performed with relatively little
demand on WM resources but differ qualitatively in their
reliance on explicit versus implicit learning systems,
respectively.

In the current work, we reassess the mechanism by
which low WM individuals attain better II learning at 8
CCR in DeCaro et al. (2008). We do this by examining cat-
egory learning at both 8 CCR and a more stringent 16 CCR
criterion. If low WM individuals are using a simple strategy
that circumvents complex hypothesis testing in WM but
does not produce optimal category learning, then they
should not excel on the II task in question at a stricter 16
CCR learning criterion. We then extend this performance
data by directly modeling the response strategies individu-
als use to perform the II task.

2. Current experiment

2.1. Method

2.1.1. Participants
Undergraduates at Miami University scoring in the

upper (N = 16) or lower (N = 14) quartiles on the average
of two commonly used measures of WM capacity were se-
lected to participate. These WM measures were adminis-
tered in a previous session during the same semester as
the current study. Although DeCaro et al. (2008) measured
WM as a continuous variable, we chose to sample the ex-
treme ends of the continuum so that we could explicitly fo-
cus on a contrast of the strategies used by those lowest and
highest in WM.

WM composite scores were created for each individual
by averaging absolute scores (see Conway et al., 2005) on
the same two WM span tests used in DeCaro et al.
(2008): the Automated Reading Span (ARspan) and Auto-
mated Operation Span (AOspan; Unsworth, Heitz, Schrock,
& Engle, 2005). Cutoff scores for high and low WM groups
(i.e., upper and lower quartile scores) were determined
from a prior sample of individuals at the same university
(high WM score range: 58–75; low WM score range: 0–
33). Participants received either course credit or payment
for participation.

2.1.2. Procedure
Individuals completed four different category learning

sets, order counterbalanced across participants. These four
sets consisted of two RB and two II category structures. The
specific tasks and procedure were borrowed directly from
Waldron and Ashby (2001) and were the same as those
used in DeCaro et al. (2008), with one primary exception:
we created 13 learning blocks, and within each block all
16 stimuli were randomly sampled without replacement
(for a total of 208 trials maximum – see Supplementary
material for more detail). We chose the sampling without
replacement method in an attempt to maximally differen-
tiate the response patterns that different decision strate-
gies predict for each block over the course of learning.

3. Results

3.1. Category learning

We first examined rule-based and information-integra-
tion category learning as a function of WM group. We ob-
tained four learning scores for each individual: the number
of trials taken to reach 8 CCR and 16 CCR averaged across
the two RB categories and the number of trials taken to
reach 8 and 16 CCR averaged across the two II categories.

If an individual did not attain the learning criterion for a
particular set, he or she received a score of 208 for that set
(the maximum number of trials performed). This was done
so that we could perform an assessment of response strat-
egies (see below). An individual’s data was removed from
the dataset if the average score for a particular category
structure was higher than 2 standard deviations from the
mean of their WM group. The data from three individuals
were excluded for the 8 CCR analyses (1 high WM, 2 low
WM) and the data from three individuals were excluded
for the 16 CCR analyses (1 high WM, 2 low WM).

3.1.1. 8 CCR
Scores for the 8 CCR criterion were analyzed using a 2

(WM group: low, high) � 2 (category structure: RB, II)
mixed ANOVA. A main effect of category structure,
F(1,22) = 65.77, p < .001, was qualified by a significant
WM � category structure interaction, F(1,22) = 4.11,
p = .05. As depicted in Fig. 1, for RB categories, high WM
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Fig. 1. Mean trials to reach a criterion of 8 consecutive correct responses
(CCR) as a function of category structure and individual differences in
working memory. Error bars represent standard errors.
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Fig. 2. Mean trials to reach a criterion of 16 consecutive correct responses
(CCR) as a function of category structure and individual differences in
working memory. Error bars represent standard errors.
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individuals (high WMs) took fewer trials to reach the
learning criterion (M = 15.97, SD = 5.26; CI: 11.87–20.06)
than low WM individuals (low WMs; M = 24.42,
SD = 9.97), d = �1.10. In contrast, high WMs required more
trials to learn II categories to the 8 CCR criterion
(M = 97.33, SD = 52.89; CI: 74.47–120.20) than low WMs
(M = 73.25, SD = 26.36), d = .56.

With a criterion of 8 CCR, we replicate DeCaro et al.’s
(2008) findings. More WM capacity leads to faster learning
of RB categories thought to rely heavily on explicit hypoth-
esis testing (Ashby & Maddox, 2005). In contrast, less WM
leads to faster learning of II categories. By demonstrating
this ‘‘less-is-more” effect for II learning holds for the cur-
rent sample, we can now examine the potential constraints
on this finding. Specifically, will low WMs fall short when
the learning criterion is made more stringent (e.g., 16
CCR)? And what might a closer examination of response
strategies tell us about the mechanism(s) underlying cate-
gory learning as a function of individual differences in
WM?

3.1.2. 16 TTC
We next examined the impact of imposing the more

stringent 16 CCR learning criterion on performance out-
comes. The number of trials taken to reach 16 CCR was
analyzed in a 2 (WM group: low, high) � 2 (category struc-
ture: RB, II) mixed ANOVA, revealing only main effects of
category structure, F(1,25) = 565.30, p < .001, and WM
group, F(1,25) = 8.16, p < .01. As seen in Fig. 2, for the RB
task, high WMs (M = 27.40, SD = 7.77; CI: 22.08–32.72)
outperformed low WMs (M = 34.54, SD = 12.27), d = �.71.
This is consistent with our findings at 8 CCR. However, in
contrast to the 8 CCR findings, at 16 CCR high WMs
(M = 168.43, SD = 42.97; CI: 150.90–185.96) also learned
the II categories faster than low WMs (M = 200.58,
SD = 10.93), d = �.97.

This reversal in II learning at 8 versus 16 CCR as a func-
tion of WM group aligns with Tharp and Pickering’s sug-
gestion that learning to 8 CCR on Waldron and Ashby’s
(2001) task may not always reflect reliance on a stable
proceduralized learning system. Otherwise, low WMs’
learning advantage at 8 CCR would remain at 16 CCR.
But, it did not. How, then, are lower (and higher) WM indi-
viduals learning the II category task?

From an inspection of Figs. 1 and 2, one can see that low
WMs’ performance changes more than high WMs’ perfor-
mance as a function of the specific learning criterion we
used to analyze the data. If the extremity of the difference
in II performance across 8 CCR and 16 CCR depends on
WM, then this might reflect a fundamental difference in
the learning strategies adopted by these groups. Although
one would still need to determine what these strategies
are, showing that changing how a performance criterion
is used to indicate learning impacts low WMs more than
high WMs would suggest that the former may be adopting
a learning strategy that is effective in terms of quickly
reaching 8 CCR, but fails to produce stable learning needed
to reach a 16 CCR criteria. In contrast, high WMs may be
more likely to rely on a learning strategy that leads to suc-
cess when a stricter 16 CCR learning criteria is imposed.

A 2 (WM group: low, high) � 2 (criterion: 8 CCR, 16
CCR) ANOVA on II learning revealed a significant
WM � criterion interaction, F(1,24) = 16.22, p < .001. This
confirms that category learning performance was more
dependent on the learning criterion we used to analyze
the data for low than high WM individuals. To explore
how low and high WMs differ in terms of the strategies
they use to perform the II task, we next modeled individu-
als’ response strategies over the course of learning.

3.2. Response strategies for the information-integration task

When setting out to model response strategies on the II
task, we noticed that explicit rules could potentially be
instantiated to categorize these stimuli at least 75% of
the time (see also Tharp & Pickering, 2009). Specifically,
the II tasks could be categorized with rules involving one,
two or three-dimensions, at 75–87.5% accuracy (see Sup-
plementary material for details). Thus, it is conceivable
that one could master, to a fairly high level of accuracy,
an II category structure when actually utilizing a simple
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explicit rule – particularly when a less stringent learning
criterion is imposed (e.g., 8 CCR). Using the optimal strat-
egy (i.e., categorizing the stimuli exactly the way they were
set up by the experimenter) of course would lead to 100%
accuracy.

For each 16-trial block we assessed the strategy most
likely used by an individual (for response modeling details,
see Supplementary material). We found that strategy sam-
pling differed over time as a function of WM group. This
was confirmed by a 2 (WM group: low, high) � 4 (strategy
type: optimal, one-dimension, two-dimension, three-
dimension) � 13 (block) interaction, F(36,900) = 1.46,
p = .04. As one can see in Fig. 3, across all learning blocks,
low WMs favored one-dimension rules above all other
strategies. High WMs also employed one-dimension rules,
yet to a lesser degree than low WM individuals – switching
instead among several different strategies.

Of note is the pattern of optimal strategy selection over
time. As shown in the leftmost column of Fig. 3, high WMs
incrementally increased their use of the optimal strategy
across learning blocks, whereas low WMs did not. This
observation was confirmed by the fact that optimal strat-
egy use over time was significantly fit by a linear function
for high WMs, F(1,14) = 13.03, p < .01, but not low WMs,
F(1,11) = 3.32, p > .05. This finding is consistent with the
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working memory groups.
notion that high WMs gradually accrue stimulus-response
associations (indicative of a procedural-based learning sys-
tem) that guide responding more than lower WMs. How-
ever, as Tharp and Pickering (2009) suggest and as we
discuss below, these data cannot sufficiently rule out the
possibility that, instead of a procedural classification strat-
egy, high WMs may be using extremely complex explicit
rules to learn the II category structures we employed
(but see Ashby, Alfonso-Reese, Turken, & Waldron, 1998).

These strategy trends can also be seen in Table 1, which
displays proportions of strategy use collapsed across all 13
blocks for low and high WMs. One should note that, be-
cause individuals almost always begin II tasks with explicit
rule use and gradually implement the optimal strategy
over time (Ashby et al., 1998), explicit rules will constitute
a large proportion of learning trials across all individuals
when collapsing across all 13 blocks. Nonetheless, submit-
ting these data to a 2 (WM group) � 4 (strategy type) AN-
OVA revealed a significant main effect of strategy type,
F(3,75) = 28.04, p < .001, qualified by a WM � strategy type
interaction, F(3,75) = 4.62, p < .01. Using 95% confidence
intervals (CIs), low WMs were more likely to use one-
dimension rules than high WMs (CI: 0.30–0.43),
d = �1.24. In contrast, high WMs were overall more likely
to use three-dimension rules (CI: 0.20–0.26), d = .72, and
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Table 1
Overall proportions of strategy use for low and high WM groups. Standard
errors are in parentheses.

Strategy type

Optimal One-
dimension

Two-
dimension

Three-
dimension

Low WM .13 (.04) .51 (.04) .18 (.02) .19 (.02)
High WM .22 (.04) .36 (.03) .19 (.02) .23 (.01)
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the optimal strategy (CI: 0.15–0.29), d = .66, than low
WMs. The groups did not differ in their use of two-dimen-
sion rules.

3.3. Response strategies and category learning

We next asked how these response strategies relate to
the II learning scores reported above. Because we were
specifically interested in exploring how strategy use leads
low WMs to perform better than high WMs at 8 CCR but
worse at 16 CCR, we correlated the number of trials to
reach each criterion with the proportion of strategy use
across the first 5 blocks (i.e., the first 80 trials). This is
the point at which individuals generally reached 8 CCR
(see Fig. 1), and thus modeling this data provides insight
into how low WMs may achieve early success on the II
task. As shown in Table 2, the more low WMs used the
one-dimension rule, the fewer trials they took to reach 8
CCR. In addition, the more low WMs tried a three-dimen-
sion rule, the worse they performed in terms of reaching
the 8 CCR criterion. High WMs did not show these correla-
tions. Instead, performance tended to improve as high
WMs used the optimal strategy.

Two key conclusions can be drawn from our data: (1)
Low WMs depend heavily on simple one-dimension rules
throughout learning, relying little on either multi-dimen-
sional rules or the optimal II learning strategy. By persev-
erating on these simple rules despite receiving error
feedback, low WMs are quicker to attain 8 CCR than high
WMs. (2) High WMs also initially employ a variety of expli-
Table 2
Correlations between the number of trials taken to reach 8 and 16
consecutive correct responses (CCR) and proportions of strategy use in
blocks 1–5.

Strategy type

Optimal Three-
dimension

Two-
dimension

One-
dimension

Low WM group
8 CCR �.27 .71** .53a �.65*

16 CCR �.17 �.09 .08 .11

High WM group
8 CCR �.49b �.18 .33 .22
16 CCR �.75** �.23 .61* .23

Note: Positive correlations indicate worse performance (i.e., greater use of
a given strategy correlated with more trials taken to reach criterion).

a p < .08.
b p < .07.

* p < .05.
** p < .01.
cit rules, but this type of rule use does not relate to early
learning because high WMs are less likely to stick with
one-dimension rules that lead to early success. Unlike
low WMs, high WMs incrementally increase their use of
the optimal classification strategy across time. Compared
to using a one-dimension ‘‘shortcut”, such complex strat-
egy selection slows accurate performance early on, but it
generally proves successful overall.

4. Discussion

4.1. Re-conceptualizing II task strategies for low WMs

We demonstrate here, as in our previous work (DeCaro
et al., 2008), that high WMs take longer than low WMs to
attain 8 CCR on Waldron and Ashby’s (2001) II task. Using
the COVIS model of category learning as a guide (Ashby &
Maddox, 2005), we had previously reasoned that, because
high WMs are better able than low WMs to hypothesis test
and keep multiple pieces of information active in WM, high
WM individuals would be more likely to test complex rules
for a longer period of time. We hypothesized that this
strategy selection would result in slower learning of II cat-
egory structures based on a proceduralized learning sys-
tem whose efficacy is hindered by the use of WM-
dependent strategies (Maddox, Love, Glass, & Filoteo,
2008). In other words, we reasoned that less WM might
be better than more during II category learning.

In some ways, we did find that less could be more in the
current work. High WMs – at the outset of learning –
tested both simple and complex explicit categorization
rules that did not allow for the quick attainment (8 CCR)
of II learning. Low WMs perseverated on simple one-
dimension rules that actually helped them obtain early
success. This type of perseveration is consistent with the
response perseveration often seen with older adults (e.g.,
Raz, Gunning-Dixon, Head, Dupuis, & Acker, 1998) and pa-
tients with prefrontal lobe damage (Shallice & Burgess,
1991; Shimamura, 2000) typically presenting with lower
WM. Yet, such simple strategy perseveration was not ben-
eficial for meeting the 16 CCR criterions. Low WMs seem to
have learned a ‘‘good enough” strategy for II category
structures that worked only when a less stringent learning
criterion was imposed. This is in contrast to higher WMs
who eventually adopted an optimal classification response
that aided performance using a 16 CCR criterion. Thus, in
other ways, less is not more.

Compared to other II category learning tasks, the Wal-
dron and Ashby (2001) II task we used has the potentially
unique characteristic that simple explicit rules can be
adopted for above-chance accuracy. From our findings it
appears that if a task can be sufficiently performed using
a simple explicit strategy, some people (i.e., low WMs) will
likely opt for this strategy above all else. This is consistent
with individual difference research in other domains, such
as insight problem solving (Beilock & DeCaro, 2007; Ricks,
Turley-Ames, & Wiley, 2007), correlation detection (Gai-
ssmaier, Schooler, & Rieskamp, 2006), and probability
matching (Wolford, Newman, Miller, & Wig, 2004). Here,
individuals lower in executive function abilities have been
shown to capitalize on simpler ways to solve problems
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than their higher ability counterparts (see DeCaro & Bei-
lock, in press, for a review). For example, in Beilock and
DeCaro (2007), we found that lower WMs were more likely
than higher WMs to abandon a complex multi-step math
problem solving strategy in favor of a simple one-step
strategy that also led to accurate performance. The ten-
dency for low WMs in the current work to rely on a one-
dimension rule that leads to above-chance accuracy and
early success is consistent with this other research.

Of course, it is an open question as to what the strategy
use of lower WMs will look like when a simple rule does
not lead to early success. We speculate that it may still
be the case that low WMs will be quicker to rely on proce-
dural-based responses than high WMs if the only other op-
tion is complex explicit hypothesis testing heavily
dependent on WM. That is, if a simple explicit rule does
not lead to above-chance performance and early success,
low WMs may instead rely on a different strategy that
skirts the burden on WM resources: procedural-based
responding. Although this is certainly a question for future
work, findings derived from studies using continuous-
dimension stimuli (e.g., Gabor patches) align with this
idea. For instance, Markman, Maddox, and Worthy (2006)
demonstrated that a distracting performance environment
improved II category learning. The distracting environment
Markman et al. employed has been shown, across a num-
ber of different studies, to reduce the WM available for
the task at hand (see Beilock, 2008 for a review). Maddox
et al. (2008) offer confirmatory evidence for this finding,
showing that II learning is impaired when the attention de-
voted to performance is increased.

Thus, when one cannot turn to a simple one-dimension
rule for above-chance performance, low WMs (who come
to the table in what might be described as a reduced capac-
ity state to begin with) may rely on a procedural-based
system earlier than their higher WM counterparts. Future
work using alternate II category tasks will help to address
this possibility. However, other II category structures (such
as the continuous-dimension stimuli mentioned above)
may also afford above-chance accuracy for those who per-
severate on simple one-dimension explicit rules even in
the face of negative feedback. In other words, uni-dimen-
sional rule selection may be a factor in all II learning tasks,
not just with the Waldron and Ashby task (cf. Zeithamova
& Maddox, 2006). Without employing individual difference
measures in category learning, it may be hard to ascertain
the extent of this rule use in any II task.

4.2. II Task strategies of high WMs

Although we show that low WM individuals have a ten-
dency to rely on explicit one-dimension rules throughout II
category learning, we also found that those higher in WM
incrementally increase their use of optimal response strat-
egies over time. We believe that these optimal strategies
reflect reliance on a procedural-based learning system be-
cause of the gradual adoption of these strategies shown in
the current work and because of the limited dual-task
interference found in other work (Waldron & Ashby,
2001; Zeithamova & Maddox, 2006; see also Ashby et al.,
1998). If so, then studies using the category learning task
employed in the current work may still be assessing II
learning for some individuals – especially when high-
achieving college students with above-average WM capac-
ities are used as participants.

However, one limitation of this particular II task is that
response modeling cannot truly differentiate a procedural
strategy from a complex multi-dimensional rule that yields
an identical response pattern. Thus, our data cannot speak
directly to whether the optimal strategy high WMs ulti-
mately adopt to classify the II categories is reflective of a
complex multi-dimensional rule or a procedural strategy.
Other converging operations, such as dual-task interven-
tions with individual difference measures, may provide
additional insight into the actual strategy used.

5. Conclusion

We show that lower WM individuals rely on simple
one-dimension explicit rules to perform the II task devel-
oped by Waldron and Ashby (2001) and employed by
DeCaro et al. (2008). And given that a simple rule can lead
to early success on the II task in question (i.e., above-
chance accuracy and quicker achievement of an 8 CCR cri-
terion), we show when less is better than more. Impor-
tantly, our interpretation of how less is more has
changed, at least with respect to the II category learning
task used in DeCaro et al. (2008). Rather than low WMs’
early success being due to a reliance on procedural-based
responding, it appears to be due to a heavier reliance on
simple one-dimension rules. Although such rules produce
above-chance accuracy and success when an 8 CCR crite-
rion is imposed, such shortcut strategies fall short in the
current category learning paradigm when higher perfor-
mance levels are required. The same category learning
tasks can be approached very differently as a function of
individual differences in WM, with those lower in WM
capacity opting for strategies that make the least demands
on executive control. These findings reinforce the need to
consider individual differences in general cognitive capac-
ities both in terms of the strategies individuals adopt for
performance and the implications these strategies carry
for cognitive and neural mechanisms driving learning.
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